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Abstract
Before investing resources into the development of a precision dosing (model-
informed precision dosing [MIPD]) tool for tacrolimus, the performance of the 
tool was evaluated in silico. A retrospective dataset of 315 de novo kidney trans-
plant recipients was first used to identify a one-compartment pharmacokinetic 
(PK) model with time-dependent clearance. MIPD performance was subse-
quently evaluated by calculating errors to predict future concentrations, which 
is directly related to dosing precision and probability of target attainment (PTA). 
Based on the identified model residual error, the theoretical upper limit was 45% 
PTA for a target of 13.5 ng/ml and an acceptable range of 12–15 ng/ml. Using 
empirical Bayesian estimation, this limit was reached on day 5 post-transplant 
and beyond. By incorporating correlated within-patient variability when predict-
ing future individual concentrations, PTA improved beyond the theoretical upper 
limit. This yielded a Bayesian feedback dosing algorithm accurately predicting 
future trough concentrations and adapting each dose to reach a target concentra-
tion. Simulated concentration-time profiles were then used to quantify MIPD-
based improvement on three end points: average PTA increased from 28% to 39%, 
median time to three concentrations in target decreased from 10 to 7 days, and 
mean log-squared distance to target decreased from 0.080 to 0.055. A study of 200 
patients was predicted to have sufficient power to demonstrate these nuanced PK 
end points reliably. These simulations supported our decision to develop a preci-
sion dosing tool for tacrolimus and test it in a prospective trial.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THIS TOPIC?
Tacrolimus is an immunosuppressor used to reduce graft rejection risk in solid 
organ transplant recipients. It has a narrow therapeutic index, potentially benefit-
ing from model-informed precision dosing (MIPD). However, this improvement 
has not been quantified in silico.
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INTRODUCTION

Optimal dosage of drugs with a narrow therapeutic index 
is an active area of research. These drugs display high 
pharmacokinetic (PK) or pharmacodynamic (PD) vari-
ability, exceeding the safe and effective variability1 and 
therefore require individual dose adaptation. Covariate-
based dose adaptation may be attempted first, as, for ex-
ample, patient bodyweight can be easily measured. In case 
of large unexplained variability, however, regular follow-
up of the patient is needed to adapt the dose. In its sim-
plest form, the drug is titrated until efficacy and safety is 
reached for the patient. Typically, drug concentration is 
used as a quantitative surrogate, aiming for an exposure 
previously established as having sufficient efficacy and ac-
ceptable safety.

One such drug requiring blood concentration monitor-
ing is tacrolimus. At sufficiently high concentrations, tac-
rolimus acts as an immunosuppressor reducing the risk of 
graft rejection in solid organ transplant recipients.2 High 
tacrolimus concentrations are strongly associated with a 
higher rate of drug-induced side effects, however, includ-
ing acute kidney injury.3 The acceptable range depends on 
transplanted organ, immunological risk, adjunct immu-
nosuppressive therapies, and may be further adapted to 
physician discretion.4,5

The required doses to achieve concentrations at a given 
target are highly variable between patients. Tacrolimus exhib-
its a high interindividual PK variability,6 with some studies 
reporting a 10-fold range in individual clearance.7 To achieve 
safe and effective drug concentrations, regular follow-up of 
tacrolimus concentrations is therefore recommended.

However, translating an observed drug concentration 
into the required dose adaptation is not trivial. In theory, 
model-informed precision dosing (MIPD) can provide ac-
curate dosing recommendations, yielding a high target 
concentration achievement. Many software packages offer 
dose adaptation of tacrolimus,8 although only a single 
study has prospectively investigated whether MIPD im-
proves this probability of target attainment (PTA).9 Størset 
et al. managed to demonstrate MIPD increases PTA, as 
compared to the standard of care. Unfortunately, no im-
provement in early post-transplantation could be shown. 
The study may have been underpowered to show this, as 
only 80 patients were recruited. Enrollment was based on 
convenience, rather than a power calculation.

To evaluate the performance of MIPD, some in silico 
methods are available. Classical goodness of fit (GOF) met-
rics, such as mean prediction error or root mean squared 
prediction error (RMSE%), show how well a model can fit 
existing data. Recently, prospective evaluation was pro-
posed to evaluate these metrics on future concentrations, 
based on only the concentration samples collected up to 
that point.10 Unfortunately, none of these metrics directly 
translate into the expected individual PK, PD, or clinical 
outcomes when using MIPD.

Simulated data are preferred over GOF metrics for two 
reasons. First, predicted individual data can be condensed 
to clinical benefit (e.g., avoidance of rejection), and this 
benefit is weighed against the implementation cost. Should 
pharmacogenetic information be included, how many ad-
ditional blood samples are needed, and should MIPD even 
be implemented at all? Quantifying the potential clinical 
benefit is key in justifying investment into MIPD.

WHAT QUESTION DID THIS STUDY ADDRESS?
This study predicts the effect on probability of target attainment of tacrolimus 
in silico during the first 14 days post renal transplant. Based on data previously 
obtained in 315 kidney transplant recipients, trough concentrations under MIPD-
recommended dosing were simulated. These were used to compare standard of 
care with MIPD using three criteria: time to reach target, per-patient average tar-
get attainment, and distance from target. These data were used to calculate the 
statistical power of a prospective clinical trial, and to optimize the design of this 
trial.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
This study is the first published in silico prediction of MIPD in tacrolimus. We 
propose the model-predictive control/MIPD estimation method to take param-
eter drift into account.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT 
AND/OR THERAPEUTICS?
This allows optimization of precision dosing implementation, and the design of a 
sufficiently powered study to demonstrate impact on clinical care.
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Second, simulated data help to design a prospec-
tive clinical trial comparing MIPD to standard of care. 
Without an in silico prediction of the study end point, 
the only recourse is either to select the study sample size 
based on available resources (as large as we can), or on 
vague assumptions (we estimate X% improvement in 
PTA). Neither method is a solid way to design a clinical 
study, leading to inconclusive results. Even if there may 
be a theoretical and worthwhile benefit to MIPD, it may 
not be possible to demonstrate this effect in a reasonably 
funded clinical study. PTA predictions allow informed and 
realistic clinical study design.

This work shows how the impact of a Bayesian feed-
back MIPD tool optimizing PK outcomes can be predicted 
in tacrolimus dosing of renal transplant recipients the 
first 14  days post-transplant. These predictions are first 
used to evaluate whether the proposed MIPD achieves a 
sufficiently high improvement in the population, and in-
deed is a worthwhile investment. It is then used to design 
a sufficiently powered clinical trial to show this benefit. 
The developed simulation software is available as open 
source. We anticipate that this approach can be applied to 
many other drugs where the benefit or optimal modalities 
of implementing MIPD is uncertain.

METHODS

Source data

A retrospective study11 of 315 kidney allograft recipi-
ents transplanted between 2004 and 2014 was repur-
posed for this work. For an in-depth description, we 
refer to the work by Vanhove et al. The dataset consisted 
of trough concentrations measured on days 0–14 post-
transplantation under the standard of care (i.e., leading 
to a dose adaptation by experienced transplant physicians 
targeting trough concentrations between 12 and 15  ng/
ml). Extensive data management was required to prepare 
this dataset for modeling (described in Supplementary 
Materials). Missing covariates were imputed as the popu-
lation median.

Model development

Based on literature review, a one-compartment model 
with oral absorption was selected as the appropriate start-
ing point for this sparse dataset. Following the approach 
from other studies,12–14 the absorption rate constant (ka) 
was fixed to 4.5/h,15 as it cannot be reliably estimated 
from trough data alone. A two-compartment model 
and addition of lag time were investigated as possible 

improvements. The use of a hematocrit-standardized 
model16 was investigated, including concentration-
dependent binding of tacrolimus to erythrocytes. The 
whole-blood concentration Cwb is related to hematocrit-
standardized concentration Cstd through a concentration-
dependent proportionality factor R, with Cstdmax reflecting 
the maximum binding capacity, and Cstd50 the concentra-
tion associated with half maximum binding.

As precision dosing targeting Cwb depends on future 
hematocrit values, a joint model was used predicting both 
tacrolimus whole-blood concentration and hematocrit. 
The time course of hematocrit was modeled using a sig-
moid model. Interindividual variability (IIV) was applied 
to all parameters.

Random effects were modeled using lognormal IIV. 
Exploratory graphical analysis pointed to a potential in-
crease in clearance over time. This was estimated using 
interoccasion variability (IOV) and investigated for cor-
relation with available covariates and time since trans-
plantation. The effect of time was modeled as either an 
exponential (Equation 4) or sigmoidal (Equation 5) func-
tion, with T50 the time at which 50% of maximum clear-
ance was reached.

Covariates were selected using a stepwise covariate 
search, including covariates that improved the objective 
function value (OFV) by 3.84 or more (p  <  0.05) in the 
forward step, and eliminating covariates resulting in less 
than 7.88 increase in OFV (p > 0.005). Continuous covari-
ates (age and weight) were included as a power-model 
(Equation 6). Discrete covariates were included as an x-
fold change (Equation 7). Last observation carried forward 
(LOCF) was used to interpolate time-varying covariates.

(1)Cwb ≈ Cb = Cstd ∗ R ∗
Hct

45%

(2)R = Cstdmax ∗
Cstd

Cstd + Cstd50

(3)Hct = BaselineHct − EmaxHct ∗
t

t + E50Hct

(4)CL∕F = CL0∕F ∗
(
1 − e

ln(0.5)
T50

t
)

(5)CL∕F = CL0∕F ∗
t

T50 + t

(6)X = �X ∗ e�X ∗
(
COV∕�COV

)�X ,COV
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Only covariates available in routine clinical practice 
were considered for covariate building. This was therefore 
limited to age, bodyweight, hematocrit, and formulation. 
Notably, CYP3A5 genotype was excluded from covariate 
search, as it is not routinely measured in clinical practice.

Model evaluation

Models were evaluated using the likelihood ratio test, 
with a ΔOFV  of −3.84 or more justifying the addition of 
a new parameter at p < 0.05. An evaluation of prediction-
corrected visual predictive check (pcVPC), GOF plots, 
and biological plausibility of parameters were also per-
formed, rejecting models with qualitatively poor results. 
The pcVPCs were generated from 500 simulated subsets of 
the original data. This was used to identify the appropriate 
model structure, covariates, IIV, and residual error model.

Models with good population fit were further evaluated 
on fitness for use in Bayesian feedback for MIPD. To this 
end, prospective evaluation with Bayesian feedback was 
used to evaluate predictive performance. Prediction error 
for observation n + 1 was calculated from an individual 
parameter estimate on observations 1..n. Only cases with 
n and n + 1 on consecutive days were included.

Prediction error PE% is based on the model prediction 
IPRED and the actual measured concentration CONC. It 
was used to characterize predictive performance of candi-
date models as RMSE, and models were compared using a 
t-test on (PE%).2 This is especially relevant to assess fitness 
for use in MIPD, as prediction error PE% is directly related 
to the error in the resulting concentration Cres after apply-
ing the recommended MIPD dose targeting Ctarget. The in-
termediate steps are available in Supplementary Material.

Based on Equation 9, an allowed Cres between 12 and 
15 ng/ml, and Ctarget of 13.5 ng/ml resulted in an allowed 
PE% between −10% and 12.5%. This was used to derive a 
theoretical upper limit for MIPD PTA. We assumed an un-
limited number of concentrations, allowing to identify in-
dividual parameters but not predict future within-subject 
variability.

To allow comparison, standard dosing by the physi-
cians was also characterized in the form of PE%, by assum-
ing physicians prescribed a dose that they think will hit 
the target. In other words, the in cerebro modeling of the 
physician predicts a trough concentration of 13.5  ng/ml  
at the dose they prescribed. The PE% for physicians was 
therefore calculated as

Bayesian feedback and model-
predictive control

Tacrolimus exhibits high PK variability, not only between 
patients but also within a single subject. This variability 
can be described by the residual error model or through 
IOV, depending on whether rich individual data is avail-
able. To the best of our knowledge, all models previously 
used to describe tacrolimus PKs assume a random vari-
ability. This variability is not entirely random, however, 
and previous studies have reported a correlation of the 
error between subsequent occasions.17 This seems intui-
tive: an increased clearance on day N should indeed carry 
over to the following day N + 1. This was quantified in the 
dataset by calculating the autocorrelation of the residual 
error from a standard Bayesian fit. For a detailed discus-
sion, please see Supplementary Material.

To integrate this correlation between subsequent oc-
casions, we opted to use a pragmatic approach, inspired 
by similar closed loop control systems in anesthesia.18 On 
day 1, regular empirical Bayesian estimation (EBE) with a 
priori estimates θ and IIV Ω is used to estimate the most 
likely individual parameters η. On day i, the individual pa-
rameter estimates from day i – 1 are used as a priori esti-
mates (θ′ = η), whereas the same IIV Ω is retained. This 
approach is reminiscent of model-predictive bioreactor 
control in chemical engineering and was therefore dubbed 
model-predictive control MIPD (MPC/MIPD). The predic-
tive performance of this method was compared to classical 
EBE using the prediction error PE% described previously.

Dosing algorithm and simulation strategy

Once a method for predicting future concentrations was 
established, we could search the dose required to opti-
mize resulting concentrations. The dosing algorithm 
is described by the following pseudo-code, with Yi the 
measured concentration, ti the associated sample time, 
η the individual parameter estimates, Dj the dose at 
administration j, tj the associated dosing time, tj+1 the 
time of the subsequent dose, f(η, tj+1, Dj) the function 

(7)X = �X ∗ e�X ∗
(
�X ,COV

)COV

(8)PE% =
IPRED − CONC

CONC

(9)PE% =
Ctarget − Cres

Cres

lim
n−>∞

PTA=p⟨N
�
0, 𝜎2

�
∈[−10%, 12.5%]⟩

(10)PE% =
13.5 − CONC

CONC
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to predict a concentration at time tj+1 as a result of all 
doses up to and including dose j, and Ctarget the target 
concentration:

The dosing algorithm was designed to execute as new 
concentration samples become available, regardless of 
whether that sample is within the acceptable range. The 
full dosing history and concentrations at each iteration 
were used to fit individual parameters η, after which the 
PK model f(η, Drec,j, ti+1) was used to predict future trough 
concentrations. For each future administration, the dose 
was adapted such that the trough concentration was equal 
to the target concentration Ctarget of 13.5 ng/ml. This is vi-
sualized in Figure 1a.

We made sure computer dosing would require minimal 
changes to the current clinical workflow at UZ Leuven. 
Therefore, the loading dose was not adapted. Only dos-
ing amounts were adapted. Planned dosing times and 
formulations (Advagraf or Prograft) were retained from 
the source dataset. Doses of 0  mg were not recorded in 
the source dataset, therefore a dummy dose of 0 mg was 
added at 08:00 if Advagraf was previously administered, 
or 08:00 and 20:00 if Prograft was previously administered. 
To ensure fair comparison with physician-based dosing, 
only doses 6  h after a concentration sample were con-
sidered for adaptation, as concentrations were generally 
only available in practice 3 h post-sampling and adapting 
a dose close to administration time was not deemed prac-
tical. Doses were rounded to 0.5 mg.

To simulate the resulting concentrations Y′ after apply-
ing MIPD, the following procedure was used (visualized in 
Figure 1b). As we cannot go back in time and administer 
the recommended dose Drec to the actual patient, we used 
the best prediction available: we simulated using a fitted 
ηorig on all observed concentrations for this patient in the 

historic dataset f(ηorig, ti+1) and re-applied the original re-
sidual error ϵ.

This exercise was performed on all 315 patients for all 
available trough samples. Missing concentration samples 
were reused as missing data. This resulted in two parallel 
datasets: a first dataset of dose and resulting concentra-
tion per patient per day as originally performed in reality 
by physicians in standard of care, and a second hypothet-
ical dataset where the dose was calculated through MIPD. 
Both arms could then be compared graphically and using 
statistical methods.

In collaboration with physicians, an improvement by 
MIPD was qualitatively defined as: more patients with 

(11)Y �
i+1 = f

(
�orig, ti+1

)
+ �i+1

F I G U R E  1   (a) Observations 1 to i were used to calculate fit 
f(η) (solid green line). This was then used to find dose D_rec that 
makes f(D_rec, t_(j + 1)) = C_target (dotted green line). (b) All 
observations 1:n were used to calculate fit f(η_orig) (solid purple 
line). This was then used to find f(η_orig, D_rec, t_(i + 1)) (dotted 
purple line). The final result Y′_(i + 1) is calculated by adding the 
original residual error ε on top
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trough concentrations in the target window of 12–15 ng/
ml, faster target attainment, and smaller deviations from 
target. This was quantitatively defined as (i) higher in-
dividual probability of target attainment, (ii) faster at-
tainment of 1, 2, 3, … cumulative days in target, and (iii) 
smaller overall distance to target on each day, defined in 
Equation 12:

Statistical methods and power calculation

Based on the above population simulations, a good de-
scription of PK outcome for N = 315 individuals was avail-
able. This allowed defining statistical tests to quantify the 
effects in the population. Furthermore, a power calcula-
tion was performed to consider what effect size could be 
significantly proven in a trial.

Dose adaptation performance was expected to be time 
dependent. Any closed loop system requires some samples 
to reach the target, and overshoot, undershoot, or “lucky 
hits” are to be expected. The proposed statistical analysis 
accounted for these effects.

1.	 Improvement on individual PTA was evaluated as a 
Welch’s t-test. A relative improvement of +33% was 
deemed clinically relevant.

2.	 Speed of target attainment was evaluated as a time-
to-event (TTE) process with nonproportional hazards. 
A one-sided Mantel-Haenszel log-rank test on TTE 
greater than three concentrations in target was used. 
A minimum relative improvement of +33% fraction 
of patients reaching target on day 7 was deemed clini-
cally relevant. Power for this test was calculated based 
on required difference in relative hazard ratio and the 
expected events over the accrual period of 14 days (see 
Supplementary Materials for more details).

3.	 We expected squared log-distance to target to decrease 
over time. Ideally, the mixed model repeated measure-
ments (MMRMs) model detects a significant reduction 
of squared log-distance due to MIPD. Power for this test 
was not calculated, as no established method for power 
analysis of MMRM models with non-normal outcomes 
is available as of yet.

Based on the simulation, accurate estimates of the 
distribution of these statistics were available. These were 
subsequently used to determine required sampled size to 
detect the clinically relevant effect.

Clinical trial simulation

Finally, the candidate trial with N  =  200 patients at 2:1 
allocation was evaluated as a clinical trial simulation. 
Standard of care was not simulated, but rather sampled with-
out replacement from the available N = 315 profiles in the 
retrospective dataset. The MIPD arm was similarly sampled 
from the profiles in the simulation previously performed. 
Dropout and missing data were considered as represented re-
alistically in the retrospective dataset. This was repeated 1000 
times to characterize the distribution of possible clinical trial 
outcomes and evaluate Probability of Study Success (PoSS).

Software

Monolix 201919 was used to perform modeling, using the 
Stochastic Approximation Expectation Maximization 
(SAEM) algorithm complemented with importance re-
sampling to determine −2 log-likelihood. The R version 
3.5.2 was used for all data management and simulation 
tasks, using tdmore version 1.1.20 Tdmore can be freely 
downloaded at https://github.com/tdmore-dev/tdmore.

RESULTS

Model building

Base model

Key model parameter estimates are available in 
Table  1. Relevant diagnostic plots are available in the 
Supplementary Material. A one-compartment model 
with oral absorption showed considerable time-
dependent bias on individual weighted residual (IWRES) 
versus time plots, overpredicting early (before day 4) 
concentrations and underpredicting late concentrations 
(days 7 and later). Inclusion of hematocrit-normalized 
concentration improved the fit (ΔOFV = −356.83), but 
did not reduce time-dependent bias. Concentration-
dependent binding was removed without any notable 
impact (∆OFV = 0.14). Estimation of IOV on clearance 
further showed a time-dependent trend, which was most 
appropriately modeled through Equation  4, yielding a 
T50 of 38.7 h and ∆OFV = −1875. The pcVPC showed 
acceptable fit on median; the outer prediction inter-
val improved by adding IIV on T50 (ωT50  =  125CV%, 
∆OFV  =  −522) and correlation between ηv and ηCL 
(ρ  =  0.681, ∆OFV  =  −145.57). Additive residual error 
was subsequently removed without impact to OFV or fit. 
The model did not further improve through absorption 
lag time or a two-compartment disposition.

(12)C > 15⇒ D2 = (logC− log15)2

C < 12⇒ D2 = (logC− log12)2

C ∈ [12, 15]⇒ D2 = 0
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Predictive performance

Prospective evaluation showed high prediction error 
(RMSE of 0.361) due to bias introduced by using LOCF 
for hematocrit. Joint modeling of tacrolimus and hemato-
crit through Equation 3 retained good population fit and 
greatly improved predictive performance (RMSE of 0.307, 
p value 0.004). By moving from three to six estimated indi-
vidual parameters, simulation time increased 40-fold. For 
further simulations, the hematocrit-standardized model 
was removed. This increased OFV by 213 points but did 
not significantly decrease predictive performance (RMSE 
of 0.325, p = 0.172).

Covariate search

Stepwise covariate modeling (SCM) is described in 
Supplementary Table  S1. As significant covariates, we 
identified hematocrit on clearance (∆OFV  =  −79.65), 
bodyweight on clearance (∆OFV  =  −13.48), and age on 
clearance (∆OFV = −10.04).

Model-predictive control

Autocorrelation of the base model residual error was 
E[ρk]  =  0.52, 0.37, 0.24, 0.16, 0.13, 0.12, 0.10, and 0.12 for 

T A B L E  1   Parameter estimates for hematocrit-standardized, base, and full model

Parameter
Joint model 
(OFV = 1594.6*) RSE

Base model 
(OFV = 19,669.68) RSE

Full model 
(OFV = 19,560.72) RSE

Typical values

Ka [/h] 4.5 fix 4.5 fix 4.5 fix

V [L] 562 2.9% 767 3.2% 760 3.1%

CL0 [L/h] 17.8 2.5% 27.6 2.6% 27.2 2.5%

T50 [h] 19.5 6.7% 26.4 5.6% 25.7 6.3%

Hct baseline [%] 0.467 0.49%

Hct Emax [%] 0.188 0.71%

Hct T50 [h] 1.23 20%

Covariate effects

Hematocrit on CL −0.461 0.33%

Weight on CL 0.571 NaN%

Weight on V 0.536 0.21%

Interindividual variability

V 57.4% 4.8% 62.8% 4.9% 60.6% 5%

CL0 53.8% 4.2% 55.7% 4.2% 52.9% 4.3%

T50 136% 6.9% 117% 6.2% 123% 6.8%

Hct baseline 7.56% 4.4%

Hct Emax 5.7% 11%

Hct T50 710% 7.8%

Correlations

corr V, CL0 0.715 4.6% 0.671 5.5% 0.68 5.5%

corr HctT50, HctBaseline −0.69 8.2%

corr T50, HctBaseline −0.375 17%

corr T50, HctT50 0.5 15%

Residual error

Proportional 0.183 1.3% 0.187 1.3% 0.185 1.3%

Note: Interindividual CV% was calculated as exp(omega)-1. Relative standard error (RSE) was determined through importance resampling. RSE for the effect of 
bodyweight on CL could not be determined numerically. *Includes hematocrit observations.
Abbreviations: CL, clearance; CV%, percent coefficient of variation; Emax, maximum effect; Ka, absorption rate constant; OFV, objective function value; V, 
volume of distribution.
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k-values of 1 (autocorrelation between subsequent obser-
vations) to 8 (autocorrelation between observations 8  days 
apart). This points to correlated consecutive residual errors. 
Predictive performance of MPC/MIPD is shown in Figure 2a. 
Compared to EBE, MPC/MIPD shows a significant improve-
ment in predictive performance. This applies to both base and 
full models. Using these results, the base model with MPC/
MIPD estimation was selected as the optimal approach, at 
RMSE of 0.304 (p = 0.432 vs. hematocrit-standardized model, 
p = 0.148 vs. base model with EBE estimation).

Based on the identified residual error, the theoretical 
upper limit for target attainment is 45.2%. Physician per-
formance averaged 25% PTA, with clear underdosing visi-
ble in Figure 2b. For Bayesian estimation, PTA (Figure 2c) 
approached the theoretical upper limit on 6 out of 14 days, 
whereas MPC/MIPD exceeded this limit. There is no appar-
ent bias visible in Figure 2a, as mean prediction error is close 
to 0. The full model did not outperform the base model. We 
opted to use the base model in further simulations, as collect-
ing covariates was not worth the increased clinical workload.

Simulation of model-informed 
precision dosing

The base model was used with MPC/MIPD to simu-
late dose adaptation and resulting concentrations. The 

dose adaptations performed by physicians and MIPD 
are compared in Figure 3. Although physicians adapted 
conservatively, MIPD applied a temporary overcorrec-
tion of the dose in order to reach target concentration as 
fast as possible. Figure 2 shows a summary of concentra-
tion per day. MIPD resulted in a large PTA, as well as 
overall concentrations closer to the target window. Per-
patient PTA was at 39% ± 15.8% for MIPD (mean ± SD), 
whereas physician PTA was at 28%  ±  16.1%. The TTE 
curves for “X observations in the target window” are 
shown in Figure 4. The difference for reaching “>1 day 
in target” is quite small, with only a 1-day delay between 
arms on average. This delay grows larger, with “>3 days 
in target” being reached for 50% of the population on 
day 8 for the intervention arm, whereas only at day 10 
for the control arm. On day 7, 48.2%  ±  5.5% reached 
greater than 3  days in target for MIPD, whereas only 
27.5 ± 3.51% reached this for the physician arm. Finally, 
the Kolmogorov-Smirnov (KS) test identified a signifi-
cant reduction in squared log-distance to target win-
dow for every day. Log-squared distance to target was 
normally distributed after Box-Cox transformation, al-
lowing the application of an MMRM analysis. This iden-
tified a significant treatment effect, yet only at a relative 
improvement of −13%. Squared log-distance to target 
window decreased from 0.080 ± 0.202 to 0.055 ± 0.191 
(mean ± SD).

F I G U R E  2   Relative prediction error (a) and predicted concentrations (b) median and 50% prediction interval for physician (blue), base 
(red), and full (green) model, using MPC (solid line) and EBE (dotted line). The target window is represented as green area. Probability of 
target attainment is shown for the relative prediction error (c) and predicted concentration (d). The theoretical limit is derived from the 
model residual error. EBE, empirical Bayesian estimation; MPC, model-predictive control; PoSS, Probability of Study Success
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Power calculation

Based on the above estimates, study power and mini-
mum detectable effect sizes are presented in Figure 5. 
The candidate trial of N  =  200 will reliably detect a 
PTA improvement at p < 0.01. The clinically relevant 

PTA can be detected at p < 0.01 with N = 145 patients. 
An improvement on TTE less than +50% may not be 
reliably detected by a trial with N = 200 patients, yet 
the true effect will be detected even at p < 0.01. On log-
squared distance to target, the population simulation 
showed a true effect size below the clinically relevant 
limit.

F I G U R E  3   Physician dose adaptation (left) versus computer dose adaptation (right). The observed concentration (x-axis) results in a 
dose change (y-axis). The grey line shows the theoretical dose adaptation when following the rule of three in steady-state
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F I G U R E  4   Proportion of patients 
with at least X concentrations in target, 
per day. Computer (solid line, bold font) 
versus physician (dotted line, normal font)
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Clinical trial simulation

Study power to detect these three aforementioned end 
points was simulated using a bootstrap of 1000 ran-
dom trials of 200 patients each. It was trivial to show an 

improvement in average PTA per patient, with a 100% 
PoSS at p  <  0.01. The average expected effect size was 
11.3% (8%–14%), with per-trial 95% lower confidence 
limit of 7.5% (4%–10.5%). Study power for the TTE test is 
shown in Figure 6. PoSS depended on the day and the end 

F I G U R E  5   Minimum detectable effect size for difference in PTA (a) and difference in speed of reaching three concentrations in target 
(b). Horizontal lines show the true effect and minimum clinically relevant effect. PTA, probability of target attainment
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point at which both arms were compared. It was decided 
to evaluate “3-days-in-target” at day 8 post-transplant, 
which yielded a PoSS of 90% at p  <  0.01. Looking at 
squared-log-distance-to-target, even the sensitive KS-test 
could only identify an improvement on days 3, 7, 8, and 
10 post-transplant. Only at these days was PoSS greater 
than 80% for p < 0.01. Using MMRM analysis, an overall 
improvement could be reliably shown, although per-day 
effects could only be reliably shown on days 6, 7, 8, and 
11 at p < 0.05.

DISCUSSION

To the best of our knowledge, this is the first example of 
predicting a clinical trial outcome comparing MIPD to 
standard of care, and the use of this prediction to optimize 
a future planned prospective clinical trial. To achieve this, 
a population PK model was first built and evaluated for 
GOF on the target population. A pragmatic approach was 
presented to incorporate unexplained variability in indi-
vidual parameters. The full simulation code was imple-
mented in a reusable R package. Finally, the predicted 
results were analyzed to describe the statistical power of 
a candidate clinical trial design, allowing optimization of 
said trial design.

Overall, the population PK model is in reasonable 
agreement with literature. Describing tacrolimus PK by 
a one-compartment model with oral absorption is com-
mon in the absence of rich concentration-time profiles.21 
Independent groups identified similar time-dependent 
clearance early post-transplantation.12,22,23 Others identi-
fied a time-dependent increase over several weeks post-
transplantation,14,17,24,25 which is likely a different effect 
altogether. Parameter estimates are broadly in agreement 
with results from similar studies focusing on the first 
14  days post-transplantation.12 Identified covariates are 
also in agreement with previous studies,21 although some 
identified a large difference in bioavailability between 
Prograft and Advagraf formulations. The identified power 
factor βCL,WT of 0.348 results in a 77% and 122% adjust-
ment of clearance for the lightest and heaviest patients 
(33.5 and 125 kg, respectively) in the study, which in light 
of IIV 55.7% explains the minimal difference between base 
and full model predictive performance. The identified IIV 
is high, which we attribute to the poor PK stability of pa-
tients early post-transplantation. This agrees with other 
studies focusing on the same study period.12,26,27

Notably, the inclusion of hematocrit at first resulted in 
poor predictive performance. When the full profile of a 
time-varying covariate is not available during prospective 
evaluation, significant bias may be introduced. Joint mod-
eling of both drug concentration and covariate is required 

to overcome this limitation. This markedly increased the 
computation times. Although model simplification re-
sulted in a penalty to OFV, predictive performance was 
not significantly impacted. Notably, applying MPC/MIPD 
again resulted in low RMSE, rivaling the more complex 
model with more covariates, at feasible calculation times.

McDougall et al.28 extensively explored the impact 
of model misspecification on precision dosing. They 
demonstrated that only severe model misspecification 
significantly impacts model-based precision dosing per-
formance. This reasoning also applies to covariate mod-
els; covariates difficult to collect can be omitted without 
impact to model predictive performance. This further ex-
emplifies the necessity to include prospective evaluation 
in the diagnostic toolset when developing models for pre-
cision dosing.

Tacrolimus PK has typically been described by a two-
compartment model when rich data are used.7 In this case, 
however, the use of two-compartment kinetics would not 
result in different results. The typical distribution phase 
is less than 12 h, and therefore no information on the dis-
tribution phase is present in daily trough concentrations, 
even with multiple dosing. There is an ongoing debate on 
appropriate PK targets for tacrolimus, with some evidence 
pointing to AUC as a superior metric.4 Our trough data-
set cannot be used to accurately predict AUC.29 With rich 
data and an appropriate model, the presented approach 
may be applied to evaluate the accuracy (and improve-
ment over standard of care) when using one, two, or more 
blood samples per day.

CYP3A5 genotype is missing from our current model, 
as it was not generally measured in transplant recipients 
at UZ Leuven hospital. It is worthwhile to evaluate the 
inclusion of this covariate, and to quantify the potential 
improvement in MIPD dosing accuracy. If this covariate is 
not available, a mixture model could be used to estimate 
individual CYP3A5 expression probability. However, due 
to the low number of CYP3A5 expressors in the target 
population, we expect the impact to be low and transient.

In this work, we argue that classical GOF evaluation 
is not appropriate when building a model for MIPD. Even 
though the full model is a significantly better description 
of the data as compared to the base model, this did not 
result in a significant improvement to predictive perfor-
mance or PTA. Clinically, it is preferable to omit covariates 
that are cumbersome to measure, if they do not improve 
predictive performance significantly. In general, we argue 
that predictive performance assessment is a key step when 
building MIPD models.

However, contrary to the well-studied classical GOF 
evaluation, it is unclear how a model with poor predic-
tive performance can be improved. As a first step, we 
suggest to include predictive performance evaluation in 
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model building software. The Perl-Speaks-Nonmem suite 
recently added the proseval tool, but lacks clear standard 
graphs to represent this data.

The MPC/MIPD method merits further discussion. 
Correlated residual errors in tacrolimus models were pre-
viously identified by Størset et al.,17 who reported that 
bioavailability varied less between subsequent occasions. 
Correlated IOV, which could otherwise be classified as 
“parameter drift,” has not been studied in detail. Pragmatic 
solutions include down-weighing older concentration 
samples or arbitrarily increasing ω during estimation. The 
novel idea of adapting the estimation method rather than 
the model resulted in a significant improvement to predic-
tive performance in this dataset.

The predicted outcome, in the form of predicted tac-
rolimus trough concentrations for the MIPD arm, differs 
from the estimated model predictive performance for 
three reasons. First, an accurate prediction does not nec-
essarily imply a future concentration in target. We can use 
the first dose recommendation as an example: the loading 
dose is too high in 170 out of 315 patients, and using the 
first trough concentration at 08:00 on day 1, the computer 
recommends a 0 mg evening dose. The computer predicts 
this dose will still result in too high concentrations the 
following morning. Second, the opportunity to adapt the 
dose may be far into the future, challenging the predictive 
performance of the model under high within-patient vari-
ability. When the dose adaptation is performed at 12:00, 
the Prograft administrations of 20:00 evening and 08:00 
the following morning can be adapted, with the latest 
trough therefore at 20:00 the next day. For Advagraf, how-
ever, only the dose at 08:00 the following morning can be 
adapted, with trough at 08:00 2 days into the future. This 
increases prediction error and therefore reduced probabil-
ity of target attainment. Finally, the prediction error does 
not directly translate to an error in resulting concentration 
after MIPD for non-steady-state. This highlights the im-
portance of using PK models for dose adaptation: dose ad-
aptation tables using dose-normalized concentration fail 
to capture the highly variable and non-steady-state nature 
of the first 2 weeks posttransplantation.

Figure  3 shows a computer algorithm performs ag-
gressive dose adaptation, in stark contrast to conserva-
tive dose adaptation by physicians, who seem to be more 
cautious in this respect. We offer three explanations for 
this behavior. First, in cerebro modeling assumes steady-
state, and therefore cannot correctly relate a wildly vary-
ing dosing history and concentrations to the required dose 
adaptation. Second, it is difficult for humans to capture 
PK dose-linearity. If the concentration is 50% below tar-
get, the dose should be doubled. Instead, we see slow 
up-titration by absolute steps, rather than, for example, 
doubling or halving the dose, contrary to current research 

advising against tacrolimus underexposure.4 Finally, we 
identified time-dependent clearance during the first week 
post-transplantation. Even when gradually increasing the 
dose, doctors are chasing a moving goalpost. MIPD does 
not suffer from any of these shortcomings.

In contrast, MIPD even uses a corrective dose to 
ensure the target trough concentration is reached as 
soon as possible. It remains unclear whether this prac-
tice is beneficial in real life. First, there is an ongoing 
discussion on the validity of trough concentration as a 
PK target.30 Targeting the area under the curve (AUC) 
may be more appropriate.31 A recent study by Miano 
et al.3 identified a PK/PD association for safety. A 54% 
increase in acute kidney injury was identified per 5 ng/
ml increase in average tacrolimus trough concentra-
tions over the previous 3 days. A similar association for 
efficacy could not be identified. Adding clinical utility 
(CU), a model integrating PK/PD/CU could focus on 
the true benefit for patients, rather than improvement 
on surrogate end points with only weak association to 
clinical benefit.

In this work, we demonstrated clearly that simulated 
MIPD concentrations can serve to refine the definition of 
trial end points. This allowed us to explore beyond mere 
“improvement in average PTA” and evaluate end points, 
such as “speed of target attainment” and “distance to tar-
get window.” It was not possible to detect an improvement 
consistently on each separate day, even using advanced 
statistical techniques, such as MMRM. Only a consistent 
effect across all days could be shown reliably. All things 
considered, the proposed techniques dig deeper into MIPD 
performance than evaluating odds ratios of PTA. As of yet, 
the relevance of the presented surrogate end points and 
their relevance to clinical outcome is based on empiric evi-
dence only. It is unfortunate that no PK/PD model predict-
ing clinical outcomes has been identified. Such a model 
could serve to replace a naïve therapeutic drug monitor-
ing approach targeting a therapeutic window, and instead 
directly find the appropriate dose to target a desired PD 
effect reaching optimum efficacy and toxicity. This model 
may also serve to design a concentration-controlled trial 
quantifying the clinical impact of MIPD.

A randomized controlled trial is always comparative 
in nature. Therefore, the presented results cannot easily 
be translated to other hospitals, as the standard of care 
differs widely between hospitals. As an example, steroid 
concomitant therapy was identified to influence tacroli-
mus PK,12,13,32 but different treatments of high-dose ste-
roids are in use at different hospitals. Furthermore, there 
is no clear evidence that retrospective data will be similar 
to standard of care performance in a comparative trial. 
Standards may have improved with increased experience, 
and a clinical trial setting may invite physicians to more 
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carefully perform dose adaptation to achieve the target 
window.

In conclusion, this work offers new insights into the 
use of simulation to predict and optimize MIPD for tac-
rolimus dose adaptation. We have shown the validity 
of predictive performance as a tool for model selection. 
MPC/MIPD was proposed as a method to incorporate 
unexplained but autocorrelated IOV. Retrospective data 
was used to fully simulate a hypothetical MIPD arm, 
which was then used to quantitatively analyze the im-
provement the technique offers. Finally, the simulated 
data was used to calculate trial power and optimize said 
trial. The simulation software was implemented as an 
open-source R package, allowing to repeat this exercise 
with any model. By making this software available, we 
hope quantitative predictions on MIPD become within 
reach, allowing to identify where this technology can 
benefit clinical care the most.
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